TABLE OF SPECIFICATION M. Phil Biochemistry (Major)

Paper I: General, Metabolic and Hormone Biochemistry

Total Marks: 150

Title of Topics	No. of lectures	M.C.Q's	S.E.Q's
Basic Biochemistry; Chemistry of	15	10	1
Carbohydrates, Proteins, lipids and		ľ	
Cell Signaling	_		
Physiochemical Principles & acid	5	7	0.5
base balance.			
Acid-base Physiology and Pathology			
Bioenergetics & energy metabolism	10	8	0.5
Carbohydrate metabolism	20	15	1.5
Protein metabolism	20	15	1.5
Lipid metabolism	20	15	1
Endocrinology	15	10	1
Total	105	80	7

Each MCQ will be of 1 mark while each SEQ will be of 10 marks.

Paper II: Medical Genetics, Advance, Clinical and Enzyme Biochemistry

Total Marks: 150

Title of Topics	No. of lectures	M.C.Q's	S.E.Q's
Liver Function tests	16	15	1
Hemoglobin and Heme Metabolism			
Xenobiotics and drug metabolism			
Renal Function Tests	10	8	1
Cardiac Markers			
Tumor Markers			
Vitamins	15	12	0.5
Minerals			·
Nucleic acids, Nucleic acid	25	15	1.5
metabolism			
Medical Genetics & Biotechnology			
Nutrition	12	10	1
Enzymology	12	10	1
Biochemical And Molecular	15	10	1
Techniques			
Total	105	80	7

Each MCQ will be of 1 mark while each SEQ will be of 10 marks.

DETAILED SYLLABUS M. PHIL BIOCHEMISTRY (MAJOR)

15 Lectures

PAPER I: GENERAL, METABOLIC AND HORMONE BIOCHEMISTRY

TOPICS

2.3.1.1

2.3.1.2

Nutrition

R Group

	C BIOCHEMISTRY
	IEMISTRY OF CARBOHYDRATES
1.1.	Classification & Biological Role
	Monosaccharides
	Oilgosaccharides
	Disaccharides
	Polysaccharides
	Homopolysacharrides
	Hetropolysacharrides
	Structure
	Anomers
	Epimers
	Enatiomers
1.2.4.	Reducing & Non Reducing Sugars
	Derived Carbohydrates
1.2.6.	D & L and Optical Isomers (d & l)
	Ring Structure (Pyran& Furan)
2 0 CH	EMISTRY OF PROTEINS AND AMINO ACIDS
	Classification & Biological Role
2.1.	Based on Solubility
	Based on Shape
	Based on Functions
2.1.3.1	
	Regulatory
	Contractile
2.1.3.4	
2.1.3.5	
	Based on 3 D Structure
2.2.	Structure
2.2.1. L	evels of Organization
2.2.1.1	Primary
2.2.1.2	Secondary
2.2.1.3	
2.2.1.4	Quaternary
2.3. An	nino Acids
2.3.1. C	lassification based on

2.3.1.3	Biochemical importance (Glycogenic, Ketogenic)	
2.3.1.4	Functional GP	
2.3.1.5	Properties	
	ISTRY OF LIPIDS AND FATTY ACIDS	
	ication & Biological Role	
	1 Primary	
	2 Secondary	
	3 Derived	
	ure – Fatty Acids	-
	1 Essential – Non Essential	
	2 Structured – Un Structured	
	ties of Fatty Acids	
	1 Rancidity	
	2 Peroxidation	
ROS (Reac	tive Oxygen Species)	
4.0 ACID I	BASE BALANCE	5 Lectures
	hemical Principles & acid base balance.	5 Ecctures
_	se Physiology and Pathology	
	ov Anjorotogj urid i uniorogj	
5.0 CELL	SIGNALING	
	sition & Chemistry of membranes of the Cells & Organelles	
_	rs & transport channels	
	messenger system	
5.4 Ca, IP3		
•	the G Proteins	
	Kinases/Tyrosine Kinases	
	xide synthase	
METAB (OLIC BIOCHEMISTRY	
6.0 BIOEN	ERGETICS & ENERGY METABOLISM	10 Lectures
6.1 Concep	t of Metabolism	
6.2 Digestic	n, Absorption, Transport & Incorporation of Biomolecule	es.
6.2.1. Carbo	hydrates	
6.2.2. Protei	ns	
6.2.3. Lipids	S	
6.2.4. Nucle	oproteins	
6.3 Bioener	getics	
6.3.1 Oxida	tive Phosphorylation including Electron Transport Chain.	
6.3.2 Photop	phosphorylation	
6.3.3 Inhibit	ors & Uncouplers	
50 C + D > C	ALL DE LEVEL AND A TOP OF	
	OHYDRATE METABOLISM	20 Lectures
	oathways of carbohydrates & their regulation.	
7.1.1 Glycol	ysis	

- 7.1.2 TCA
- 7.1.3 Gluconeogenesis
- 7.1.4 HMP shunt
- 7.1.5 Glycogenesis & Glycogenolysis
- 7.1.6 Glycogenic Cycle
- 7.1.7 Glycogen Storage Diseases

8.0 PROTEIN AND AMINO ACID METABOLISM

20 Lectures

Metabolic pathways of proteins & their regulation.

- 8.1 Nitrogen Economy & their regulations
- 8.2 Anabolism & Catabolism of Aromatic and aliphatic A.A.
- 8.3 Anabolism & Catabolism of Sulfur containing A.A.
- 8.4 Anabolism & Catabolism of Branched Chain A.A.
- 8.5 Anabolism & Catabolism of hydroxyl GP containing A.A.
- 8.6 Anabolism & Catabolism of Acidic & Basic A.A.
- 8.7 Detoxification of Ammonia in Birds Reptiles & Mammals (Urea Cycle).
- 8.7 Inborn error of Metabolism
- 8.8 Functions of Plasma Proteins.

9.0 LIPIDS AND FATTY ACIDS METABOLISM

20 Lectures

Metabolic pathways of lipids & their regulation.

- 9.1 Synthesis of Fatty Acids
- 9.2 Oxidation of Fatty Acids
- 9.3 Phospholipids
- 9.4 Cholesterol Synthesis (Steroids & prostaglandins)
- 9.5 Lipid Storage Diseases

11.0 ENDOCRINOLOGY

15 Lectures

- 11.1 Chemistry, Synthesis, degradation, hyper & hypo states of the following hormones:
 - i. Insulin
- ii. Glucagon
- iii. Thyroid
- iv. Adrenal Cortical H
- v. Adrenal medullary H
- vi. Parathyroid H
- vii. FSH & LH
- viii. ACTH, TSH, Oxytocin
- ix. ADH

PAPER II: MEDICAL GENETICS, ADVANCE, CLINICAL AND ENZYME BIOCHEMISTRY

TOPICS

12.0 LIVER FUNCTION TEST

5 Lectures

- 12.1 Biochemical Functions of Liver
- 12.2 Pathophysiology and Clinical Presentation of Liver diseases
- 12.3 Lab Diagnosis and interpretation of Liver function tests

13.0 HEME AND HEMOGLOBIN METABOLISM

7 Lectures

- 13.1 Biochemistry of Heme and Hemoglobin
- 13.2 Metabolism of heme and hemoglobin (Synthesis of degradation of Hemoglobin)
- 13.3 Porphyrias

14.0 XENOBIOTICS AND DRUG METABOLISM

4 Lectures

14.1 Phases and reactions of detoxification

15.0 RENAL FUNCTION TESTS

3 Lectures

- 15.1 Diagnosis and screening of renal diseases
- 15.2 Types of Renal Failure, the uremic syndrome and Nephrotic syndrome
- 15.3 Renal Function Tests

16.0 ACID-BASE PHYSIOLOGY AND PATHOLOGY

3 Lectures

- 16.1 Buffer systems in acid-base balance
- 16.2 Mechanism of Acid-base balance
- 16.3 Disorders of acid-base balance; acidosis, alkalosis, their types and compensation

17.0 CARDIAC MARKERS

4 Lectures

- 17.1 Basic Biochemistry and Tissue distribution
- 17.2 Clinical utility of cardiac markers
- 17.3 Lab diagnosis of Myocardial Infarction

18.0 TUMOR MARKERS

2 Lectures

- 19.1 Introduction to Tumor markers
- 19.2 Clinical Application of Tumor markers
- 19.3 Specific Tumor markers

19.0 VITAMINS

8 Lectures

- 19.1 Basic concepts and Classification of Vitamins
- 19.2 Sources, Absorption and Excretion of Vitamins

19.3 Water Soluble Vitamins

19.3.1 Biochemical Functions and deficiencies of Water soluble vitamins

19.4 Fat Soluble Vitamins

19.4.1 Biochemical Functions and deficiencies of Fat soluble vitamins

20.0 MINERALS AND TRACE ELEMENTS

7 Lectures

20.1 Biochemistry and Function of Essential Trace Elements

21.0 MEDICAL GENETICS & BIOTECHNOLOGY

25 Lectures

21.1 CHEMISTRY OF NUCLEIC ACIDS (DNA & RNA)

- 21.1.1. Nitrogenous Bases
- 21.1.2. Nucleosides
- 21.1.3. Nucleotides
- 21.1.4. Nucleic Acids
- 21.1.5. Nucleoproteins

21.2 Nucleic acids Metabolism

Metabolic pathways of nucleic acid & their regulation.

- 21.2.1 Biosynthesis and degradation of purines & Pyramidines
- 21.2.2 Disorders of Nitrogen metabolism.
- 21.3. Genes, Chromosomes, Central Dogma
- 21.4. Cell Cycle
- 21.5 Replication & proof reading
- 21.6. Trancription
- 21.7 Post transcriptional modifications
- 21.8 Translation
- 21.9 Post translational modifications
- 21.10 Operon
- 2111 DNA damage
- 21.11.1 Extracellular agents causing DNA damage
- 21.11.2 Endogenous mechanisms causing DNA damage
- 21.12 DNA Repair
- 21.13 Human genome project
- 21.14 Genetic disorder with Mendelian and Complex inheritance
- 21.15. Mutations and their types
- 21.16. Identifying Human gene diseases
- 21.16.1. Position-independent strategies
- 21.16.2. Identifying a disease gene through knowing the protein product
- 21.16.3. Identifying a disease gene through animal model
- 21.17. Genetic Engineering
- 21.17.1. Plasmid, vector, Translocation,
- 21.17.2. Cloning
- 21.17.3. Recombinant DNA Technology
- 21.17.4. Nucleic Acid Sequencing
- 23.18 Genetic Polymorphism and Sequence variation
- 23.19 Molecular Pathology
- 23.19.1. Effects of mutation of phenotype
- 23.19.1.1 Loss of function mutations
- 23.191.2 Gain of function mutations
- 23.19.2. Molecular Pathology: From gene to disease
- 23.19.3. Molecular Pathology: From disease to gene
- 23.19.4 Molecular Pathology chromosomal disorders
- 23.20 Cancer Genetics
- 23.21 Genetic testing, Gene tracking, Population Screening, Ethical issues

11.0 ENZYMOLOGY

12 Lectures

- 11.1. Nomenclature, Units, Coenzymes, Cofactors
- 11.2. Classification
- 11.3. Factor affecting enzyme activity
- 11.4. Regulatory Enzymes
 - 11.4.1 Allosteric Activity
 - 11.4.2 Covalent Modification
 - 11.4.3 Iso-enzymes
 - 11.4.4 Inhibition of Enzymes
 - 11.4.5 Others
- 11.5. RNA as an Enzyme
- 11.6. Clinical importance of Enzymes
- 11.7. Kinetics of Enzymes
 - Michaelis/Menton Equation
 - Linweaver Burk Equation

24.0 NUTRITIONAL BIOCHEMISTRY

12 Lectures

- 24.1. Food in Health
- 24.2. Balanced Diet & its Composition
- 24.3. Diet for
- 24.3.1. New Born (0-6 Months)
- 24.3.2. Infants (7 1 Year)
- 24.3.3. Children (1.1 12 years)
- 24.3.4. Teenagers (13-19 Years)
- 24.3.5. Adults (20-45 years)
- 24.3.6. Old Age (46-70 Years)
- 24.4. Diet for Pregnant & Lactating Women
- 24.6. Diet for Ailments (hypertensive, Cardiac & Renal Patients)
- 24.7. Diet for obese & Patients with malnutrition (Marasmus, Kwashiorkor)
- 24.8. Diet for Diabetic Patients
- 24.9. Diet for Diarrohea Patients
- 24.9. BMR, PM, Caloric Value
- 24.10. Composition & Caloric value in commercially available commodities.

12.0 BIOCHEMICAL AND MOLECULAR TECHNIQUES

15 Lectures

- 12.1 Solution & buffer system
- 12.2 Amino Acid Analyzer
- 12.3 Chromatography including HPLC
- 12.4 Electrophoresis
- 12.5 PCR
- 12.6 Restriction Fragment Length Polymorphism
- 12.7 Western Blotting
- 12.8 Southern Blotting
- 12.9 Eastern Blotting
- 12.10 Northern Blotting
- 12.11Fluorescence labeled techniques
- 12.12 Radioactive labeled techniques

- 12.13 Mass Spectroscopy 12.14 ELISA

- 12.15 Spectrophotometry
 12.16 Atomic Absorption spectrometry
 12.16 Flame photometry